
J Math Chem (2012) 50:741–751
DOI 10.1007/s10910-011-9921-5

ORIGINAL PAPER

Symmetrical overlap transformations of function basis
sets: the LCAO MO and quantum similarity practical
cases

Ramon Carbó-Dorca

Received: 7 March 2011 / Accepted: 23 September 2011 / Published online: 7 October 2011
© Springer Science+Business Media, LLC 2011

Abstract Quantum chemical computational procedures, like LCAO MO theory and
quantum similarity, use non orthogonal function basis sets, which define finite dimen-
sional subspaces of a Hilbert space. Based on the original overlap metric matrices,
generated by the chosen finite non orthogonal basis sets, there are several symmetrical
overlap and basis set transformations possible. This study tries to find out the general
point of view, from where all these procedures can be studied in a clear generalized
perspective.
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1 Introduction

In a previous paper, related to study the first order density function [1], has been put
forward some partial aspects of the non-orthogonal basis set transformation problem.
Concretely, the issues of the role of reciprocal space and the Löwdin transformation
as well were discussed. In the present paper it is intended to study in a deepest gen-
eral framework this kind of basis set transformations based on the associated metric
matrix.

Also, some quantum similarity (QS) aspects related to the tensorial representation
of molecular sets have been recently studied [2] too. This must be taken as an extension
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of the old QS issue of considering the columns of the quantum similarity matrix as a
source of molecular descriptors. A general extensive possibility has been put forward
and discussed constituting the background of a problem which here, in the present
study, will appear as a particular case of function basis set symmetrical transformation
procedures.

Thinking about the many aspects of the quantum chemical theoretical formalism,
related on how function basis set transformations can be studied, has aroused the
interest of the present author and focused it into the subject of function basis set sym-
metrical transformations in general. Such previous consideration has led to the idea
that one must also focus about the, even more important, relationship of the practical
computational finite subspaces with the ideal infinite dimensional Hilbert space, where
the first ones belong.

Many aspects studied in this paper have not been, as far as the author knows, studied
in deep as a complete theoretical structure, from where many particular facets can be
deduced. Thus, the present work will be organized studying first the basic principles,
which will be also employed to put forward a convenient notation. Then, the general
framework will be developed, which will be used to deduce quite well-known basis
set transformations, like Löwdin’s [3], which will appear in turn as one possible algo-
rithm among many other choices. In addition, the present paper will also study the
applicability which can have the general symmetric transformation definitions, when
employed in both LCAO MO and QS theories.

2 Function basis sets and overlap metric matrices

The real, practical birth of modern quantum chemistry has to be traced first to the
work of Mulliken [4] on the algebraic framework now known as LCAO MO theory.
Afterwards, such quantum chemical origins can be also associated to the first paper
of Boys [5], where the use of GTO basis sets was initially promoted. In any case,
the main idea was to construct MO’s as linear combinations of a finite number of
basis set functions, usually centered in the molecular atomic sites or elsewhere in the
surrounding tridimensional molecular space.

Independently of the nature of the primitive functions computationally employed
to form the basis sets, which will be later used to build the MO’s up, one can study
imposed by such a choice the basic algebraic problem from a simple abstract point
of view. In doing such program primarily, one can also try to secondarily deduce any
emerging interesting properties and algorithmic procedures as well.

On the other hand, a similar algebraic situation was presented since the first paper
on QS related to molecular sets [6] and the posterior elaboration of a general theory
of the problem, see for example references [7,8]. The definition of quantum object set
(QOS) concept, see for a recent résumé [9], connects by means of a Cartesian product
a set made of an arbitrary finite number of molecular structures with a one-to-one
related set of density functions. The QOS density functions tags also can be consid-
ered acting as a basis set which generates a finite dimensional subspace, belonging in
turn to an infinite dimensional Hilbert space.
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Therefore, in an equivalent way the QS framework basic structure is obviously
connected with the LCAO MO framework. This is so, as a consequence, in both
quantum chemical theoretical cases, that it is known an initial well defined basis set,
made of linearly independent real valued functions of homogeneous real variables:1

X = {χμ

∣
∣ μ = 1, M}.

The dependence of the function elements of the basis set X from a coordinate vari-
able set has to be considered homogeneous for all the elements of the set. For instance,
all functions will depend in the same manner of the coordinates of one electron, both
in the usual LCAO MO basis set case or in the first order density functions, currently
employed in QS theory framework.2 Accordingly, the proposed problem in order to
be properly stated and solved has to possess a necessary property consisting into that
all the elements of X have to bear the same kind of variable types, submitted to a
common dimension. It is in this sense that one can say the basis set X is compulsively
made of homogeneous functions.

Moreover, the elements of X can be ordered into a row (or column) vector: 〈χ | =
(χ1;χ2; . . . χμ; . . . χM ). Such a vector can be employed to construct a tensor prod-
uct, which can be expressed indistinctly by means of two equivalent symbolic ways,
resulting in the same set of matrix or tensor elements:

X = |χ〉 ⊗ |χ〉 = |χ〉 〈χ | = {

xμν = χμχν |μ, ν = 1, M
}

, (1)

the first product is made by means of a tensorial convention, while the second product
in Eq. (1) is written employing the well-known Dirac’s notation for vectors in a row
〈u| and the transposed column |u〉 = (〈u|)T notation.

The elements of the tensor definition (1) can be integrated submitted to the follow-
ing convention:

S = 〈X〉 = 〈|χ〉 〈χ |〉

=
⎧

⎨

⎩
sμν =

∫

D

xμν(r)dr =
∫

D

χμ(r)χν(r)dr

∣
∣
∣
∣
∣
∣

μ, ν = 1, M

⎫

⎬

⎭
, (2)

where the homogeneous variable vectors of the basis set functions have been given
explicitly here, in order to easily show the integration structure of every element of
the tensor (1).

The resultant matrix S constructed in Eq. (2) is named the overlap (or metric) matrix,
see for example [10], which is a common term employed since the initial Mulliken
definition in quantum chemistry, see for example [11,12].

1 From now on it will be supposed that the functions are real valued and defined over real variables. Adapt-
ing the present study to the more general framework of complex valued functions, poses no more problems
than the ones specified here, but needs some additional notation burden, which it is avoided here in this
way.
2 In both cases though, functions bearing several one electron coordinates can be employed, for instance:
geminals in LCAO MO or higher order DF in QS.
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In QS theory on the other hand, the basis set functions are electronic density func-
tions and the resultant metric matrix is usually called the (overlap) similarity matrix
associated to the elements of the QOS, see for example references [9–13].

In the following discussion the columns of the overlap matrix (2) will be used; they
can be written as follows:

S = (|s1〉 ; |s2〉 ; . . .
∣
∣sμ

〉 ; . . . |sM 〉) . (3)

3 Overlap properties and functions

The overlap matrix (2) obtained from LCAO MO theory, a priori corresponds by con-
struction to a positive definite matrix. That is, a symmetric matrix whose eigenvalues
are positive definite:

∀I = 1, M : S |uI 〉 = σI |uI 〉 → σI ∈ R+ ∧ ∀I, J : 〈uI |uJ 〉 = δI J . (4)

If the overlap matrix has a null (or a computationally obtained value which is equal
or less than the machine precision) eigenvalue, this indicates that there is a function
in X which is linearly dependent of the rest, and thus that X is no longer an algebraic
correct basis set. In this case, some correction procedure must be followed to construct
a suitable basis set.

In QS framework, the overlap similarity matrix is symmetric and non-singular, usu-
ally positive definite. However, in some cases, due to the need of optimal molecular
superposition in order to obtain the elements of the similarity matrix it can become
non definite. This has to be interpreted in the sense that one or more eigenvalues of the
similarity matrix can be negative, see for example [14,15]. If the QOS elements are
essentially distinct, because all the implied density functions are linearly independent,
then the similarity matrix determinant will be always non-null.

In both cases the overlap or metric matrix has to correspond to a symmetric non-
singular matrix. The overlap eigensystem as shown in Eq. (4) can be easily computed
in any case. It can be also expressed in a compact form like:

SU = U� ↔ UT SU = � ↔ S = U�UT ,

where U = (|u1〉; |u2〉; . . . |uI 〉; . . . |uM 〉) is an orthogonal matrix: UUT = UT U = I,
which has as columns the eigenvectors of S and � = Diag(σ1; σ2; . . . σI ; . . . σM ) is
a diagonal matrix collecting the corresponding eigenvalues in the same order as the
eigenvectors are stored.

Any smooth function of the overlap matrix f (S), which is also a symmetric matrix:
f (S) = ( f (S))T , can be easily written by using the fact that for any diagonal matrix,
like �, one can write:

f (�) = Diag( f (σ1); f (σ2); . . . f (σI ); . . . f (σM )),
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then it can be also deduced that one can obtain the desired function of the overlap
matrix as:

f (S) = U f (�)UT . (5)

4 Equivalent basis set and overlap symmetric transformations

Using an overlap function, from Eq. (5) one can put easily forward a general trans-
formation of the overlap itself, which can be observed as such, or alternatively as a
consequence of a transformation performed on the originating function basis set (1).
Taking into account that f (S) is a symmetric matrix, one can write:

T = f (S)S f (S) = f (S) 〈|χ〉 〈χ |〉 f (S) = 〈 f (S) |χ〉 〈χ | f (S)〉 , (6)

a result which can be also easily obtained by means of the basis set transformation:

〈ξ | = 〈χ | f (S), (7)

which is a transformed basis set providing a new metric matrix, which can be written as:

〈|ξ 〉 〈ξ |〉 = 〈 f (S) |χ〉 〈χ | f (S)〉 = f (S) 〈|χ〉 〈χ |〉 f (S) = f (S)S f (S) = T. (8)

Thus, Eqs. (6) or (8) correspond to the general form of a particular symmetric non-
singular transformation either of the basis set as in Eq. (7) or of the overlap matrix like
in Eq. (6). From any of both points of view, the result is a new transformed overlap
matrix T.

5 Particular cases of the symmetric transformations of the overlap

Several particular cases can be obtained from the transformations (6) or (8). The most
obvious among the plausible ones can be described as follows:

1. f (S) = S. This will result in the following transformed overlap:

T = S3. (9)

Such an overlap is equivalent to obtain a new basis set defined as:

〈ξ | = 〈χ | S,

which in turn can be associated to express the initial basis set functions as linear
combinations of the initial overlap columns:

∀ν : ξν = 〈χ |sν〉 =
∑

μ

sμνχμ =
∑

μ

∣
∣χμ

〉 〈

χμ|χν

〉 =
(

∑

μ

∣
∣χμ

〉 〈

χμ

∣
∣

)

|χν〉

= PX (χν)
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That is: every transformed function can be seen as the result to project every initial
basis set function, belonging to the infinite dimensional Hilbert space, into the
subspace generated by the initial basis set X by means of a projector defined as:

PX =
∑

μ

∣
∣χμ

〉 〈

χμ

∣
∣.

Because of this result, the transformed overlap matrix (9) can be named projected
transformation metric matrix.
Also, it is interesting to note that the new overlap metric matrix (9), obtained in
the way explained in this paragraph above, can be considered too a metric matrix
constructed as follows:

T = SSS = ST SS → T = {

tμν = 〈

sμ

∣
∣ S |sν〉 |μ, ν = 1, M

}

. (10)

This is so, because when one considers the columns of the initial overlap matrix as
shown in Eq. (3), then the result above in Eq. (10) becomes the same as to consider
the metric matrix (9) like the metric of the columns of the original overlap (2),
computed within the original metric matrix (2).

2. From another possible form, the choice: f (S) = S−1, produces a reciprocal space
transformed overlap, as one can write:

T = S−1SS−1 = S−1.

This is equivalent to transform the basis set functions by means of the inverse
overlap matrix:

〈ξ | = 〈χ | S−1.

Because of these properties one can call reciprocal transformation to this resultant
overlap choice.

3. The oldest of this kind of transformations, the Löwdin transformation, as described
in reference [3], uses the inverse square root of the overlap matrix: f (S) = S− 1

2 ,
resulting into a unit metric matrix:

T = S− 1
2 SS− 1

2 = I,

which is the same as to obtain a new transformed basis set:

〈ξ | = 〈χ | S− 1
2 ,

with the additional property of being orthonormalized:

∀μ, ν : 〈

ξμ|ξν

〉 = δμν.

This new basis set is evidently known as Löwdin orthonormalized basis set.
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4. The inverse of the Löwdin transformation, that is: the square root of the original
overlap (2), also constitutes an interesting overlap transformation:

f (S) = S+ 1
2 , (11)

as it produces a new kind of transformed overlap, which can be written as:

T = S+ 1
2 SS+ 1

2 = S2 = SS = ST S, (12)

which is the same as to consider that the transformed overlap elements (12) are the
result of the scalar products involving the initial overlap column (or row) vectors
under an orthonormalized metric. This situation constitutes an alternative to the
already discussed transformed form, as shown in Eq. (10) of paragraph 1). This is
so, because when one considers the columns of the initial overlap matrix as written
in Eq. (3), then the overlap matrix (12) can be easily constructed as the set of the
original overlap columns scalar products:

T = {

tμν = 〈

sμ|sν

〉 |μ, ν = 1, M
}

. (13)

Thus, the new overlap matrix (12), obtained from the square root transformation
(11), can be interpreted as the metric matrix of the finite dimensional space, gen-
erated by the discrete vector basis set, made in turn by the set of columns of the
initial metric matrix S:

S = {∣
∣sμ

〉 |μ = 1, M
}

.

That is, the metric (12) results when, instead of considering as a basis set the
function set X per se, one considers the coordinates set S of the representation of
the functions of X with respect themselves. Such a transformation can be called
a self-metric transform. It can be of use in QS QOS ordering procedures see for
example [15–17].

5. A great deal of other transformation kinds, based in the general framework devel-
oped here, can be easily imagined. For instance, given a real parameter α, one can
design the exponential transformation:

f (S) = exp(αS),

which for sufficiently small values of the parameter can be written approximately
as:

f (S) = I + αS + O(α2),

therefore providing an approximate transformed overlap, which can be written like:

T = (I + αS)S(I + αS) = S + 2αS2 + O(α2),
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which adds (or substracts) a term to the original overlap matrix, originated in the
framework of the previous self-metric transformation of paragraph 4).

6 Invariant properties of the symmetric transformations

So far, the symmetric transformations setup developed here possess several invari-
ant properties, when studied involving the diverse mathematical objects, appearing
in the current practice of quantum chemistry. For instance, if one constructs linear
combinations of the functions from the basis set X , it can be written:

∀I = 1, M : |φI 〉 = 〈χ |cI 〉 , (14)

where the set 
 = {|φI 〉 |I = 1, M } can be associated to some MO set. Then, the
column coefficient set ordered in the form of a matrix:

C = (|c1〉 ; |c2〉 ; . . . |cI 〉 ; . . . |cM 〉) ,

corresponds to the coordinates of each MO expressed with respect to the basis set
functions X . The linear combinations (14) remain invariant whenever the basis set
is submitted to a symmetric transformation like the ones studied before, while the
coefficient columns of C are transformed by the inverse of the chosen transformation
matrix, that is:

∀I = 1, M : |φI 〉 = 〈χ | f (S) [ f (S)]−1 |cI 〉
= 〈ξ | [ f (S)]−1 |cI 〉 = 〈ξ |dI 〉 , (15)

where the transformed coefficients can be written now by means of:

∀I = 1, M : |dI 〉 = [ f (S)]−1 |cI 〉

and the symmetric transformation inverse is easily constructed taking into account
equation (5):

[ f (S)]−1 = U [ f (�)]−1 UT

and complementarily using the straightforward inverse of a diagonal matrix form:

[ f (�)]−1 = Diag
(

f (σ1)
−1; f (σ2)

−1; . . . f (σI )
−1; . . . f (σM )−1

)

.

Thus, if this double transformation leaves the MO structure invariant, everything else
depending of MO’s becomes invariant. Within LCAO MO theory everything, from
many electron wave functions up to expectation values, depends on MO coefficients
and basis sets, consequently the whole tree made of LCAO MO theoretical branches
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become invariant. For example, the invariant first order density function can be ex-
pressed in any symmetrically transformed basis set, provided that the MO coordinates
are transformed by the symmetrical inverse:

ρ(r) =
∑

I

ωI |φI 〉 〈φI | =
∑

I

ωI 〈cI |χ〉 〈χ |cI 〉 =
∑

I

ωI 〈dI |ξ 〉 〈ξ |dI 〉 .

Therefore, the one electron expectation values observables associated to the MO the-
oretical evaluation remain invariant, whenever the double symmetric transformation
of type (15) is employed.

7 Some QS considerations

The discussion on the possible metric matrix symmetric transformations can be of
use in QS calculation of similarity and dissimilarity indices. In fact, once any of the
discussed non-orthogonal metric matrices T = {

tμν

}

is known, then its elements can
be employed to obtain two kinds of complementary indices.

The first one can be connected with the cosines of the angles subtended by two
vectors, it is customarily known in QS lore as Carbó similarity index [18,19] (CSI),
which in general can be obtained as:

∀μ, ν = 1, M : rμν = tμν

(

tμμtνν

)− 1
2 . (16)

The second QS index possibility has been recently described [20]. It can be asso-
ciated to a normalized Euclidian distance index. It has been proposed to name it as
Carbó-Hodgkin-Richards dissimilarity index (CHRDI) and can be defined as:

∀μ, ν = 1, M : dμν =
(

1 − 2tμν

(

tμμ + tνν

)−1
) 1

2
. (17)

Both CSI and CHRDI indices vary in the interval: [0, 1]. However, while the maximal
value of the CSI corresponds to a maximal similarity, the maximal value of the CHRDI
corresponds to a minimal similarity. Conversely, a minimal CSI value corresponds to
a minimal similarity, while a minimal CHRDI value corresponds to a maximal simi-
larity. It is in this sense, as both indices are varying within the same unit interval the
two indices can be considered complementary.

Thus, computation of QS indices can benefit of the collection of transformed overlap
similarity matrices, which can be obtained using the algebraic framework developed
here. QS indices, like the ones in expressions (16) and (17) proposed above, can be
employed to order the elements of QOS, for instance using Kruskal trees, see for
instance references [15,16] or any other ordering numerical device, see for example
[21].

In this sense, the construction and interpretation of the varied symmetric overlap
transformations can be of great help in obtaining diverse points of view, pointing
towards the implementation of accurate and many faceted molecular qualitative struc-
ture-properties relationships associated to a quantum origin.
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8 Final remarks

One must be aware of the fact that, when performing a symmetrical transformation of
the original overlap metric matrix S, implicitly performs a symmetrical transformation
of the original function basis set X . Therefore, the new transformed overlap matrix
can be thought as made by transformed functions, which have to be considered linear
combinations of the original ones.

As a consequence of the symmetrical transformations, the transformed functions
in both studied frameworks, LCAO MO or QS, no longer possess some of the funda-
mental attributes of the original functions.

In molecular LCAO MO theory the new transformed functions are nevermore at-
tached to a given unique center, but become multicenter functions.

In QS framework, the original density functions, which are uniquely attached and
define the nature of every quantum object (QO) in a QOS, once submitted to a sym-
metrical overlap transformation cannot be considered uniquely associated to a spe-
cific QO, but become a linear combination of the whole set of density functions
considered as a basis set. However, in any symmetrical transformation case, every
transformed function can be supposed that it continues representing the associated
QO, now characterized within the ensemble of the whole QOS elements, including
itself.

As a final résumé one can say that a multiple point of view has to be considered,
when studying the problem posed by the mathematical and computational use of finite
dimensional functional basis sets. One must be aware that the finite function set X is
a subset of an infinite dimensional Hilbert space. As the elements of this set X must
be linearly independent by construction, they generate a finite dimensional subspace
within the Hilbert space where they belong.

The direct overlap matrix S, obtained from the elements of X , corresponds to the
Gram matrix of X too, but must be considered as a mathematical object belonging to
Hilbert space.

On the other hand, the columns of the overlap matrix can be viewed as the coordi-
nates of the functions of X , when expressed as linear combinations of themselves. That
is, when observed from the point of view of the finite dimensional space generated
by X . Thus, the columns (or rows) of the overlap matrix can be considered as a discrete
representation of a basis set within some column (or row) vector space.

The metric matrix of this finite dimensional vector space can be subject of diverse
symmetrical transformations, based on the original overlap matrix, which are equiv-
alent to perform similar transformations on the basis set X . Löwdin’s transforma-
tion is just one of them, transforming the original basis set into an orthonormalized
one.

9 Conclusions

Based on the original overlap metric matrix associated to a basis set constructed by
a finite number of functions, symmetrical transformations of overlap matrices consti-
tute a large family of basis set transformations, which can be employed for various
purposes both in usual LCAO MO and in QS theories. Such transformations leave
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the MO’s invariant and thus atomic and molecular quantum mechanical expectation
values too.

A specific particular case of the family of symmetrical transformations of the
overlap metric matrix can be used to obtain orthonormalized function basis sets via
Löwdin’s procedure.

Symmetrical overlap transformations can have a computational valuable potential
use in QS, permitting to obtain a collection of similarity indices and thus a multifaceted
point of view in the ordering of molecular QOS, enhancing the qualitative assessment
of molecular structure-properties relationships.

Written in the way presented in this paper, overlap symmetrical transformations
can also have a valuable pedagogical potential to understand the nature and properties
of function basis sets in LCAO MO theory.
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